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MOMENTS OF THE MINIMUM OF A RANDOM WALK

AND COMPLETE CONVERGENCE

by

Michael Hogan

Department of Statistics
Stanford University

Abbreviated Title: Moments of Minimum of a Random Walk

Key Words: Random Walk, Renewal Theorem, Complete Convergence,

Strong Law of Large Numbers

4 Summary: Moments of the Minimum of a Random walk and Complete Convergence.

Let S be a random walk with positive drift. Let S . inf {S }. New
n>O

proofs are given of the following: For p > 1 EIS min Ip <

E(S P+II < Z PS < 0} <=> E(ISI 2( ) < -, and some
(Sl<O) n <O)

related results.
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1. Introduction

This paper gives new proofs of the equivalences that are stated as

Theorem 1 in Section 3. Robbins and Hsu [6] first showed c => e in

1948 with p = 1. They considered the problem in the context of a ran-

2
dom walk generated by X with E X =0, and showed that E Xi <

=> Z p{jI2 > El < -. They called the finiteness of this sum complete con-
n n

vergence. It implies the strong law of large numbers by an application of

the Borel-Cantelli lemma. Erdos [3] proved the reverse direction in 1949

and Baum and Katz [1] added the equivalence of (d) in 1965. Kiefer and

Wolfowitz [5] estiblished the equivalence of (c) and (f) and the (c)<=>(g)

is in Taylor [7]. Independent discovery of both of the results were credited

by the respective authors to unpublished work of Darling, Erdos and Kakutani.

These results are partially restated as Theorems 2 and 3 of section 4.

The new proofs provide an S-free approach to these problems. The elemen-

tary Renewal Theorem, time reversal, and Wald's identities are the primary

tools, and suffice for the case p=2. For larger p, the martingale con-

ditional square function has to be used to replace Wald's identities to show

the existence of moments in stopped random walks.

4 2. Notation and Conventions.

Fix the following notation and conventions. X is an i.i.d. se-
i

quence with p = EX > 0; X =-X {X.<0}; So = 0, Si = E X for i > 0;
Sj=l (j)

Smin = inf{Si; i > 0}; T+ is the first strict ascending ladder epoch, T+ is

the jth strict ascending ladder epoch: T_ is the first weak descending ladder

epoch, or + 6 if none exists, T- (C) Is the jth weak descending ladder

epoch, or + - if none exists (see Feller [4], Sec. 12.1 for definition);
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0

L(O) E 1. l{inf Si < 01' N(O) = I{S < O}
n=l j~ n  - n=l n-

i.e. L(0) is the last time the process is non-positive, and N(O) is the

number of times the process is non-positive; inf{ } = o; T(a) =

inf{n > 0: S > a}; t(a) = inf{n > 0: S_ < a}; K and C will be posi-

tive constants, not necessarily the same from line to line; E{Y;A} =

E(YlA); W = (XI,X2 ...), a = (X+ I X+ 2 ,...). Ex denotes expectation of

I the random walk started from x; E = E°.

3. Statement and Proof of Theorem:

Theorem 1: For p > 2 the following are equivalent:

6

a). E(T+ P) < o

b). E(-_ P-I; T_ < 0o) < oo

c). E((X-) p ) < o

d). E(L(O) p - I ) < -o

e). E(N(0)" ' I < o

f). E(JS min iP- ) < OD
g). E(JS-_1P-1; T_ < oo) < o.

Four lemmas will be given first, then the proof proceeds as follows:

a <=> b; a <=> c; d => b; a and b => d; d => e; e => g; g -> f; f => e;

f => c.

* Lemma 1: If E(T P) < co then E(t(-x) P-; t(-x) < oo) < K V x > 0.
+



Proof: By time-reversal one has, V K > 0,

P{t(-K) - n) = P{S > -K,... > -K, S < -KI

= P{S n -Sn_ > - K,..Sn- S > -K, Sn <-K

< P{S 1 < O,...,S n < 01
1 n- '

I
=P{T + > n.

Multiply the first and last lines by np -  and summing implies the result,

with K C E@ P).
p +

Lemma 2: If E(T+ P) < - then E(T(y)P)< K(y + 1) p  V y > 0.

Proof: First notice that E(T+p ) < - => E(T(y)p) < -,V y > 0. For

ii P{X < 01 > 0 one conditions on the random walk at time 1 to show

E(t(C)p ) < , > 0, from which E(T(y)p) < - VY follows as below,

if P{X < 0) - 0 the one-sided hitting problem is the same as a two-sided

problem, for which Stein's Lemma (cf Feller [5], Sec. 18.2) says i(y)

has moments of all orders. To proceed with the proof, observe that for

K > 0 an integer

+ +

T(Ky) < T(y) + .(y)y) (.._I~y)) and the

T(y)((+ ) are !..i.d. Hence by Minkowski's Inequality.I(jy)

E(-r(Ky) p ) < Kp E(T(y) p )

and so

6 3



0p

E(T(y)p ) < E T([y] + 1)

< E(C(l)P)([y] + 11p

< E (T-(1) p) (y + 1) p

Lemma 3: For x > 0 let

R = -S -x t(-x) <

0 , (-x) = (x.

Then V p > I E((X-) p) < - => E(R_ ; t(-x) < K, where K is
-x4

independent of x.

Proof: This is essentially the same as Theorem 2.4 in Woodroofe [8].

P{R_x > y} Z Z P{t(-x) > n, Sn < -x - y}.
n= 1

< E P{S > -x, S < -x - y}n=-- n-i-- n~n=1

= fCo F(-x - y - s) F*(n-l)(ds)
n=l -x

=oD F(-x - y -s)U (ds)

<C c F(-x -y - k)

k>-x

< C E F(-y - k)
k>O

< C F y F(z)dz.

4



where F *j  is the J-fold convolution of F with itself, and U is the

renewal measure: U(x) -U(y) [F *M(x) - F*m(y)]. Multiplying the first

and last statements by y and integrating gives the stated result.

1Lemma 4: E(S T-P; T- < oo) < 0 => E((X-) p+ ) < 0 V p > 0.

Proof: The statement is invariant under change of scale, so if X is

lattice one may assume that the span of X is less than 1. It may also

be assumed that X is not bounded below, for otherwise the statement of

the lemma is trivial. In this case, with

R =S -x

since the asymptotic distribution of R has positive mass on [0,1) (see

Woodroofe [8], Sec. 2.2),

0 < r = inf P{R < i}.
> xx>0

By time-reversal, for n > 0

P{S_ e (-n - , -n), T- < c}

=zI P{S > 0.... S > 0, S. (-n - 1, -n)}

_ Z P{-n - 1 S S,.,-n - 1 > Sj I , Si C-n - 1, -n)}

J=l

- o J, R <li}E1 P >S.-n-I -n-I

-P{R _n I < 1.

-{Rn-I 1 .

5



I~ _-. - -. -.. . .- -.. .. . . .. . . -_ . ll-- . . .i ... I p-

I

And

P{R_nI < 1) > P{R_nI < 1, X1 <-n-l1

6-= fn+1 P{R- < 11 P{X 1 E dx}.

> r P{X- > n +}.
1

Thus

P{S £ (-n - i, -n)) > r P{X I > n +i.

Multiplying by np  and summing gives the statement of the lemma.

Proof of the Theorem.

a => b E(Tp) < oo => E(TP-I; T < -) < 0. By a standard time

reversal argument (See Feller [4], Sec. 12.2),
CO

P{T+ > n1 = E P{T( =n).
j=l

In particular

PiT+ > n} > P{T_ = n}.

p-I
Multiplying by n and summing gives the result.

4
b>aE(p-- +p

b => a E _ ; r-_ < ,-) < oo => E(T ) < -. Note that conditioned

S(Ii) r(ij ) *i

on T < Co = Y., where the Y. are i.i.d. with
i=I

6



0p- P{T1~ MC P{Y < y}= P{T_ < Y T_ < o)} Thus mZ n- PT- n

E(I(J)[P-; T(J) < oo) < jp - T < 00) P{T < j

So

Z np -  P{T+ > n} < Z jp-i P{T_ < o-}J- E(TP-I; T < o)
ml +j =i

< K E(T P-1 ; T < )p-

a => c E(Tp ) < oo => E((X-)
p ) < o.

By the Elementary Renewal Theorem (Chung [9], Thm. 5.5.2), H c, K > 0 such

that E(T(x)) > cx V x > K. So E(T(x) p) > (E(r(x)))p > cp xp V x > K

Conditioning on the first step of the random walk gives

00 > E(Tp)

>f0 E(t(x))P P{X- e dx}.

>fc cp xp P{X- 6 dx}.

The last line implies E((X-)P) < o.

=> a E((X-) p ) < - => E( p ) < o. It suffices to assume X < C for some

c > 0; for, Xt can be truncated above to give X. with E X > 0,

and T+ for the random walk generated by the X.i is larger than that for

* the Xi random walk, so if the claim can be proven for the X, process

it follows for the Xi process.

In this case it may be assumed that the Xi have at least 2 moments.

Wald's identity for the 2
n d moment gives

7
I



E(S T+ T+) 2  (Var X,) E(T+) <.

2 2
But ST+ < C so E ST+ < 0 => E T+ < -. Let q sup{p.> 2:

E((X-) q ) < - => E(T q ) < - V 2 < q < p}. Suppose A < . Let a < q < 2a.

Then E(T +q /2 ) < -. Therefore, by Burkholder and Gundy [2, Theorem 5.3.

U

E I S q < 00

q<
from which E rq < + follows as above. This is a contradiction.

d => b E(L(O)p -1 ) < o => E(Tr p-1 T < Co) < C.

Proof: L(O) > T_1 < }.

a and b => d E(-rp) < -, and E(T p-1 ;)< ) < => E(L(0) ) < 0*
-4-

The idea of the proof is to express L(O) as a sum of successive trips

above and below the origin, until the random walk stays permanently above
0

0. Finding the random walk above 0 one must know the p-is t moment of the

expected time to get back below 0 must be bounded no matter where the

process is, provided it ever does. This is the content of Lemma 1. Having

hit below 0 one must know that the p-ls t moment of the expected time

to reach 0 is finite. According to Lemma 2 this quantity is bounded by

K fO (lyl + I)p-I F(dy), where F denotes the hitting place of the non-
0

positive axis.

8



Lemma 3 provides a uniform bound on the p-is t moments of these distri-

butions F. The proof is then finished by observing that, because of the

positive drift, this cycling behavior can only be repeated a few times.

Proof: Set p = (1.-q) = P{T = c}. Define

TI = inf{K > 1: SK > 0 and g m < K with S m< 0

and for n > 1

T = inf{K >T +..+ Tn = SK > 0 and T +...+ Tn 1 < m < K with

S <0}-(T T ),T < co

=co, Tni co

[3.11 L(o)IP-I < E I + T iP-I {Tn T

m=i nfTl<co, n+1=-1

E(IT I  T.. Tn P-I; T n<o, T n+l-o)

< E(IT T np-l; Tn co)

< np - 1 E(T p - 1 +. .+ TnP-1; T<)

E(TP- ; T ) is estimated seperately when i=n, and i<n. First
i nl< 00

the case i<n.

E(TpI , T ) = E(E(Tp- I T TI ))+1 n < C 1 Tn T 1l +...+ T nl

= E(T P-; < o P{T } < 00)

S Tn-1 n < +.. .+T n-1

< q E(TP-I; Tn < )

4 n-i

and

9



n n n n i "" n-1VS

TT 1 T n- (p-i T ) T < c+)

= E(E ( 1 ; T 1  < co ; Tn <_1 )•

1 1 'n-i

Consider for x > 0

EX{TP-l; T < O} = Ex{(T. + T(-S )(W +))P-; T < 00)

1 1 - -- T-

S

< 2 P-(E X(r P-1; T < 00) + E (E (T-(0)P-; < c)).

nd
The first term is < K by Lemma 1. For the 2n d  using lemmas 2 and 3

it follows that

S

E X(E -(T (0) P-I ; T_ < 00))

= ;0 Ey(T(0) 1P-) pX{s ; dy, T_ < cc}

< K'-o lY + ilp-I pX{s dy, T_ < cc}.

< K".

Thus

E(TP-; Tn < cc) < K P{Tn I < 00}

n-i< K q (*)

Set a = E(T
1  +..T.+ n- T n<c)

Summing (*) from I to n-i and adding (**) gives

n-i

a n<q anI+K qn-n - a 1 +

10



Therefore, an  is geometrically decreasing, and E a n  . A look

at 3.1 shows that E a < co => E L(O) p -  < .n

d > (LOP-)< -o => E(N(OPl < oo

Proof: L(O) > N(O).

e>g E(N(0)P- 3I ) < oo--> E(IS T IP-I; T_ < o) < 0
-oo

Proof: The amount of time spent getting back above 4 after having hit
1

below 4 for the first-time is T(O)(_ + So

(1 + N(0)) p - I > T(0)(C0+ ) 1 <

* and - > E((l + N(0)) p - I ) > E(-Ir(0)(C+ ); W< +)

= E(E(TP-I(0)(W + ); T < F )
T_ T_

ST-(T(0)P-1; T_ < 1)_=>E(IST Ip-l; T_ < 00) <

as in the last part of a and b => d.

R => f E(IS Y Tp-l; T_ < o) < o=> E(IS min P
- I < CO)

Proof: Smin  can be written as Z , where Zi is a random walk withmm ~ni

P{Z I < y} = P{S < y}IT < oo}, P{M = n) PfT < _n PfT - -} n=O,

1, ..., and M is independent of the Zi. This can be seen intuitively

by considering the decreasing ladder process, or a quick proof can be

based on a comparison of the characteristic functions given in Feller

[4], Chapt. 18. E(IS T Ip- ; T_ < -) < w => E( IZl p - l ) < O, so

E(ISmin IP- ) = E E(IZJp-') P{M = n}
* n

< E(IzIP-I) E np I PfM =n
n

< Oi



0

f > E(IS min IP-1)< = > Is T-I P-1; T_ < 001 < G

U Proof: IsT I]{T- < -1} < SminI

f => e E(IS min Ip- I ) < - => E(N(0) p - I ) < 00.

Proof: Since E(IS min IP-l< -, then E{ISI P-; T_ < -} < M . From

lemma 4 E((X-) P+l) < - so the result follows from c -> d => e.

f => c E(jS minP-1 )< - => E((X-)P) < o

Proof: Follows from f => g and Lemma 4.

4. Remarks and Applications.

Let Y. be a i.i.d. sequence of random variables with EY. 0.

Let S ;Y +'" + Yn 1* n

00

L(E) = 1 {Sup IV >.
n=l j>n

00

N() = l {iSn I >  Cn--1

n

0

Theorem 2: For p > 2

(1) E((N(c) P-i) < - <=> E(IYIP) <

(2) E(L(F-)P-I)< oo <=> E(IYI p) < o

00 S._ - 2

(3) E P{sup > C1 " < 00 <=> E IYIp <
n=l j>n

(4) E P{ I S-n I > C} <=> E IY1 2  < m

n=I n

12
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Remarks: The "only if" part of (4), for p=l is due to Robbins and Hsu

[6], (4) with p=l is due to Erdos [31, (3) was first proved by Baum

and Katz and can be found in [1].

Proof: (1) and (2) follow from the equivalence of c,d, and e by

considering the random walks Sn + ne. (3) is the same as (2) plus the

observation that P{L(E) > n} = P{sup ISi > E}, and (4) follows similarlyj~n J

from 
(1).

Let X. be i.i.d. random variables with E X. = P (0,0),

Sn = X 1 +...+ Xn.

Theorem 3: For p > 1 the following are equivalent:

(1) E((X-)P+l) <

(2) E(IsJ T IP; T_ < ) < CO

; (3) E(JS min j p )  <

Remark: The equivalence of (2) and (3) for p=l is credited by

Taylor [7], to unpublished work of Darling, Erdos and Kakutani, and

Taylor adds a proof of the equivalence of (1). Kiefer and Wolfowitz [51

also credit the equivalence of (1) and (3) to unpublished results of

*I Darling, Erdos and Kalutani; and they give their own proof. The moments of

the minimum are of interest because the minimum has the distribution of the

stationary distribution of a type of queueing preeess. See [4] p. 198.

4

Proof: This is the equivalence above, however, the tortuous path via

the implications of Theorem I can be replaced by lemma 4.

I would like to thank Professor Siegmund for help received on this

problem. In particular he showed me the time-reversal proof of b => a.
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